Two bodies A and B of masses m and 2m respectively are placed on a smooth floor. They are connected by a spring. A third body C of mass m moves with velocity v_0 along the line joining A and B and collides elastically with A as shown in figure. At a certain instant of time t_0 after collision, it is found that the instantaneous velocities of A and B are the same. Further at this instant the compression of the spring is found to be x_0 . Determine (a) the common velocity of A and B at time t_0 and (b) the spring constant. (1984, 6M)

Solution

as Collision hotulen A and C is clastic. Some both he ids hate have some mass, they will enchange their relocative

$$^{m}A^{V_{0}} = (^{m}A + ^{m}B)V =) V = ^{V_{0}}/3$$

$$m_A = m$$
 $m_B = 2m$

6) from conservation of energy,
$$\frac{1}{2} m_A V_o^2 = \frac{1}{2} (m_A + m_B) V^2 + \frac{1}{2} K \chi_o^2$$

$$\frac{1}{2} m_A V_o^2 = \frac{1}{2} 3m \left(\frac{V_o}{3}\right)^2 + \frac{1}{2} K \chi_o^2$$

$$\frac{1}{2} K \kappa_o^2 = \frac{1}{3} m V_o^2$$

$$K = \frac{2m V_o^2}{3 \chi_o^2}$$